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Abstract This series of reviews focuses on the most important neuromuscular
function in many sport performances, the ability to generate maximal
muscular power. Part 1 focuses on the factors that affect maximal power
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production, while part 2, which will follow in a forthcoming edition of Sports
Medicine, explores the practical application of these findings by reviewing the
scientific literature relevant to the development of training programmes that
most effectively enhance maximal power production. The ability of the neu-
romuscular system to generate maximal power is affected by a range of
interrelated factors. Maximal muscular power is defined and limited by the
force-velocity relationship and affected by the length-tension relationship.
The ability to generate maximal power is influenced by the type of muscle
action involved and, in particular, the time available to develop force, storage
and utilization of elastic energy, interactions of contractile and elastic ele-
ments, potentiation of contractile and elastic filaments as well as stretch
reflexes. Furthermore, maximal power production is influenced by morpho-
logical factors including fibre type contribution to whole muscle area, muscle
architectural features and tendon properties as well as neural factors includ-
ing motor unit recruitment, firing frequency, synchronization and inter-
muscular coordination. In addition, acute changes in the muscle environment
(i.e. alterations resulting from fatigue, changes in hormone milieu and muscle
temperature) impact the ability to generate maximal power. Resistance
training has been shown to impact each of these neuromuscular factors in
quite specific ways. Therefore, an understanding of the biological basis of
maximal power production is essential for developing training programmes
that effectively enhance maximal power production in the human.

Maximal power describes the highest level of
power (work/time) achieved in muscular con-
tractions.[1] From an applied perspective, max-
imal power represents the greatest instantaneous
power during a single movement performed with
the goal of producing maximal velocity at take-
off, release or impact.[2,3] This encompasses gen-
eric movements such as sprinting, jumping,
changing direction, throwing, kicking and strik-
ing and therefore applies to the vast majority of
sports. Empirical evidence supported by pre-
vious research has shown that superior ability
to generate maximal power typically results in
enhanced athletic performance.[2-6] A series of
interrelated neuromuscular factors contribute to
maximal power production. These factors, as well
as any evidence of adaptations to these factors
following training, will be discussed in part 1 of
this review. Part 2, which will follow in a forth-
coming edition of Sports Medicine, will explore
the scientific literature relevant to the develop-
ment of training programmes that most effectively
improve maximal power production in dynamic
athletic movements.

The search for scientific literature relevant to
this review was performed using US National
Library of Medicine (PubMed), MEDLINE and
SportDiscus� databases and the terms ‘maximal
power’ and ‘muscular power’. Relevant literature
was also sourced from searches of related articles
arising from the reference list of those obtained
from the database searches. The studies reviewed
examined factors that could potentially influence
the production of maximal muscular power.

1. Muscle Mechanics

1.1 Force-Velocity Relationship

The force-velocity relationship represents a
characteristic property of muscle that dictates its
power production capacities. Various levels of
organization have been used to study the re-
lationship including molecular and single-cell
levels, wholemuscle andmulti-musclemovements,
as well as single and multi-joint movements.[7-13]

Regardless of the approach, the characteristic
hyperbola (figure 1) can be used to describe the
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inverse relationship between the force and velo-
city during concentric muscle contraction.[14] As
the velocity of concentric muscle action is in-
creased, less force is capable of being generated
during that contraction. This is true for a given
muscle or muscle group activated at a constant
level as is due to actin-myosin cross-bridge cycling.
Specifically, because it takes a fixed amount of
time for cross-bridges to attach and detach, the
total number of cross-bridges attached decreases
with increasing velocity of muscle shortening. Due
to the fact that the amount of force generated by a
muscle depends on the number of attached cross-
bridges, force production decreases as the velo-
city of the contraction increases and power,
therefore, is maximized at a combination of sub-
maximal force and velocity values.[15] Although
the force-velocity relationship was first defined
using isolated frog sartorius muscle,[14] all human
movements are similarly limited by this funda-
mental property of muscles.[7,8,10-12,16,17] Max-
imal muscular power is therefore determined by
the parameters of the force-velocity relationship:
maximal isometric force (Fmax), maximal velocity
of shortening (Vmax) and the degree of curvature
(defined by a/Fmax or b/Vmax). Improvements in
maximal power output of a muscle can be
achieved through increasing Fmax or Vmax and/or

decreasing the degree of curvature. Measure-
ments of the force-velocity relationship during
movements in vivo (more accurately termed load-
velocity or torque-angular velocity relationship
but referred to as force-velocity relationship
throughout to prevent confusion) are complicated
by mixed fibre composition,[16,18,19] architectu-
ral characteristics,[20,21] anatomical joint config-
uration[16] and levels of neural activation.[7,21-24]

Despite these limitations, examination of the force-
velocity relationship during such movements
quantifies the ability of the intact neuromuscular
system to function under various loading condi-
tions. This information is essential in under-
standingmaximal power production during human
movements.

1.2 Length-Tension Relationship

The ability of skeletal muscle to generate force
is critically dependent on sarcomere length.[25-27]

The greatest potential for force production on
activation of the cross-bridge cycle exists when
the sarcomere length provides for optimal over-
lap between the actin and myosin filaments (de-
scribed as the ‘optimal length’). At this length,
cross-bridge interaction is maximal, which allows
for the greatest levels of active tension develop-
ment.[25-27] Force production is impaired when
sarcomere lengths are shortened below the opti-
mal length due to overlap of the actin filaments
from opposite ends of the sarcomere and the
compression of the myosin filament as it comes in
contact with the Z-disk.[15] Stretching a sarco-
mere beyond the optimal length also reduces the
force production capacity. At longer lengths,
cross-bridge interaction is decreased as a result of
less overlap between actin and myosin fila-
ments.[25-27] In vivo research has demonstrated
that resting muscle lengths are generally slightly
shorter than the optimal length[28] and, therefore,
muscular force may be increased with a slight
stretch prior to activation. While muscular power
is defined by the force-velocity relationship, the
length-tension relationship influences the ability
of muscle fibres to develop force and, therefore,
plays an important role in maximal muscular
power production.

1.0

Velocity
Power

V
el

oc
ity

/V
m

ax
 a

nd
 p

ow
er

/P
m

ax

0

Force/Fmax

1.00

Fig. 1. The force-velocity and force-power relationships for con-
centric contractions of skeletal muscle. Force, velocity and power are
normalized to the maximum isometric force (Fmax), maximum velocity
of shortening (Vmax) and maximum power output (Pmax), respectively.
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1.3 Type of Muscle Action

The ability of muscle to generate maximal
power is influenced by the type of action involved;
eccentric or concentric contractions as well as ac-
tions involving the combination of eccentric, iso-
metric and/or concentric contractions.[29] Muscle
function required in natural human movement
rarely calls for the use of these muscle actions in
isolation. The successive combination of eccentric
and concentric actions forms the most common
type of muscle function and is termed the stretch-
shortening cycle (SSC).[29,30] When a muscle fibre
is activated, stretched, then immediately shor-
tened, the force and power generated during the
concentric action is greater than a concentric-only
contraction.[31,32] Therefore, maximal muscular
power is superior in movements involving a
SSC.[17,33-40] While there is a consensus within the
literature regarding the potentiating effect of a
SSC on performance, the mechanisms responsible
for improved performance during SSC move-
ments are an issue of debate amongst researchers.

1.3.1 Time Available to Develop Force

One of the proposed mechanisms driving the
superior maximal power output observed during
SSC compared with concentric-only movements
is based on the fact that it takes time for muscle to
generate force (due to time constraints imposed
by stimulation, excitation and contraction dy-
namics[41]). The eccentric action during a SSC
movement allows time for the agonist muscles to
develop considerable force prior to the concentric
contraction. In contrast, the concentric contrac-
tion starts as soon as force development (beyond
that which is required to maintain a static posi-
tion) begins in concentric-only movements. An
alternate view of this same principle is that SSC
contractions have enhanced power generation
capability due to the greater distance over which
force can be developed compared with concentric-
only movements (i.e. based on the work-energy
relationship). Hence, force during the concentric
phase is greater in SSC movements, subsequently
resulting in superior performance.[42-46] However,
power output was observed to be higher in a SSC
movement comparedwith a concentric-only move-

ment immediately preceded by a maximal isomet-
ric action,[47] indicating that the time available to
develop force is not the only factor contributing
to enhance muscular power.

1.3.2 Storage and Utilization of Elastic Energy

The most generally reported mechanism be-
lieved to drive the SSC-induced enhancement of
maximal power is the storage and utilization of
elastic energy.[48] When an active muscle-tendon
unit (MTU) is stretched, mechanical work is ab-
sorbed by the MTU and this work can be stored
in part as potential energy in the series elastic
component (SEC; includes fibre cross-bridges,
aponeurosis and tendon).[31,34,49] It is believed
that some of this potential energy can then be
used to increase the mechanical energy and posi-
tive work during the following concentric con-
traction.[17,31,33,34,36,49] This recoil of the SEC is
thought to contribute to the increased force at the
beginning of the concentric phase in SSC move-
ments and ultimately to enhanced maximal
power production.[17,31,33,34,36,49]

1.3.3 Interactions of Contractile and Elastic
Elements

In SSC movements, the interactions between
the contractile and elastic elements play an im-
portant role in enhancing maximal performance.
Tendinous recoil has been shown to influence
the contribution of the contractile component of
work produced during SSC movements.[50-52]

Higher force at the beginning of the concentric
phase during SSC movements results in greater
tendinous lengthening with less fascicle lengthen-
ing.[53-57] As the concentric contraction progresses,
the muscle fibre contracts at a nearly constant
length (i.e. isometric), while the rapid short-
ening of the MTU largely depends on the shorten-
ing of the tendinous structure.[53-57] In contrast,
while some tendinous displacement does occur,
the majority of the MTU length change during
concentric-only movements is due to fascicle
shortening.[54] The minimal displacement of
muscle fibres during the concentric phase of
SSC movements is believed to be caused by the
catapult action of the tendinous structures (i.e.
lengthening-shortening behaviour).[58]

20 Cormie et al.
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These interactions may influence performance
in three distinct ways. First, elastic energy would
be stored predominantly in the tendinous struc-
tures and therefore can be utilized with minimal
dissipation via the tendon recoil during the con-
centric phase.[58,59] Second, the minimal displace-
ment of muscle fibres during SSC movements
means that they operate closer to their optimal
length and, based on the length-tension relation-
ship, can therefore produce more force.[53,55,56]

Finally, while the net shortening velocity of the
MTU is high, fascicle length change occurs at
relatively slow velocities. Thus, fascicles are able
to generate high forces according to the force-
velocity relationship.[60] Therefore, during SSC
movements, the contractile element acts as a force
generator producing high forces at relatively low
shortening velocities, while the tendinous struc-
tures act as an energy re-distributor and power
amplifier.[60] The interaction of these components
is vital in SSC movements because it allows for
the muscle-tendon complex to generate superior
maximal power output.

1.3.4 Potentiation of Contractile and Elastic
Filaments

The potentiation of the actin-myosin cross-
bridges is another mechanism thought to contri-
bute to the SSC-induced enhancement in maximal
power output.[34,47,50,61] In tetanized isolated
muscle and single muscle fibres, an active stretch
has been observed to enhance work output of
the contractile machinery during subsequent
shortening,[32,62-64] a finding supported by in vivo
studies involving intact muscle-tendon com-
plexes.[34,47,61] This potentiating effect is thought
to be due to enhanced force production per cross-
bridge rather than an increase in the number of
active cross-bridges.[62,64] Woledge and Curtin[65]

proposed that strained cross-bridges are detached
in a state that permits them to re-attach more
rapidly than cross-bridges not exposed to a pre-
stretch. While suggestions have also been made
that some cross-bridges may be left in a highly
strained state after the stretch, it is not currently
known precisely how the force per cross-bridge is
enhanced.[61] Despite the convincing in vitro evi-
dence, the extent to which the potentiation of the

contractile filaments influences in vivo SSC per-
formance has been questioned.[66] In vivo ob-
servations of isometric (rather than lengthening)
action of muscle fascicles during a stretch[54,55]

cast doubt on the possible contribution of force
potentiation to enhanced SSC performance
in vivo. Additionally, the potentiation of elastic
filaments such as titin and/or nebulin has been
proposed as another possible mechanism con-
tributing to enhanced force production following
an active stretch.[67-70] It has been theorized that an
active stretch may be associated with a calcium-
dependent increase in titin stiffness, which in turn
contributes to enhanced force production com-
pared with a non-activated stretch.[67-70] However,
a recent investigation suggests that enhanced force
production in the absence of actin-myosin overlap
cannot be explained by calcium-induced stiffening
of titin and proposes cross-bridge force-dependent
titin-actin interactions to be responsible for non
actin-myosin-based force enhancement observed
following an active stretch.[71] Indeed, further re-
search is required to establish if, and to what extent,
potentiation of contractile and elastic filaments
occurs during SSCmovements in vivo as well as the
relative contribution of this effect to maximal
muscular power.

1.3.5 Stretch Reflexes

Another mechanism proposed to contribute to
the enhanced maximal power output during SSC
movements is the activation of spinal reflexes.
The forced lengthening of the MTU during the
eccentric phase of SSC movements causes a me-
chanical deformation of the muscle spindles,
which activates reflex mechanisms (stretch reflexes
of a-motoneurons).[72] The stretch reflex subse-
quently increases muscle stimulation, resulting in
increased contraction force during the concentric
phase and ultimately contributes to enhanced
maximal power output.[37,39,73-78] Despite some
reservations, the consensus within the literature
appears to be that SSC movements do evoke a
stretch reflex of sufficient magnitude to contribute
to the increase in muscular force during the con-
centric phase.[37,39,48,73-75,77] Therefore, the devel-
opment of maximal power during SSCmovements

Biological Basis of Maximal Power Production 21
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may be influenced in some degree by the activation
of stretch reflexes.

1.3.6 Effect of Training on Stretch-Shortening Cycle
Function

The beneficial effects of resistance training on
SSC performance has been well documented.[79-84]

However, to date, no conclusive evidence exists
identifying how the aforementioned mechanisms
contributing to enhanced SSC performance are
affected by training. Several speculative theories
exist but further research is required to identify
the adaptations driving training-induced im-
provements in SSC performance.

2. Morphological Factors

The ability to generate maximal power during a
movement is dictated by the contractile capacity of
the muscles involved. The contractile capacity of
muscle is influenced by a series of morphological
factors but primarily its fibre type composition and
architectural features. Additionally, the properties
of tendon influence the function of the contractile
elements within the MTU and therefore impact
maximal power production.

2.1 Muscle Fibre Type

Due to the unique characteristics of each fibre
type, the force-velocity properties of a muscle are
determined by the fibre type contribution to
whole muscle area.[8,12] Type II fibres have a
greater capacity to generate power per unit cross-
sectional area (CSA).[8,12,19,85-87] In an investiga-
tion of single fibres from the vastus lateralis, peak
power per unit CSA was observed to be 5- and
10-fold greater in type IIa and IIx fibres, re-
spectively, when compared with type I fibres.[87]

However, these contractile properties were mea-
sured as sub-physiological temperatures (15�C)
and thus may not reflect function in vivo.[88]

Examination of results of studies using closer to
in vivo muscle temperatures suggest that the dif-
ferences in peak power per unit CSA are smaller
than those observed at lower temperatures. In a
study specifically addressing this issue, the pro-
pelling velocity of actin filaments by myosin from
human muscle fibres was only 2-fold greater with

type IIx versus type I myosin when measured at
35�C, compared with a 7.5-fold difference at
15�C.[88] In a rare study measuring the contractile
properties of intact human muscle fibres at 37�C,
bundles of type II fibres were found to have a
3-fold greater Vmax and a 4-fold greater maxi-
mum power output (Pmax) than bundles of type I
fibres.[19] The differences in peak power per unit
CSA are due to differences in specific force (i.e.
Fmax/CSA), Vmax and the curvature of the force-
velocity curve amongst the fibre types.[13,15,19,87]

Using single fibre preparations, type II fibres have
been observed to have significantly greater spe-
cific force than type I fibres.[13,87,89] Similar find-
ings have been observed in whole skeletal muscle
investigations (i.e. muscles composed mainly of
type II fibres vs mainly type I fibres) although this
is a somewhat controversial area in muscle phy-
siology.[15] However, differences in Vmax are the-
orized to have a much more pronounced influence
on the difference in Pmax values between fibre
types.[15] Type II fibres are characterized by high
sarcoplasmic reticulum and myofibrillar adeno-
sine triphosphatase (ATPase) activities, and corre-
spondingly high Vmax and short contraction time/
twitch duration (i.e. the heads of type II myosin
isoforms split ATPase approximately 600 times/
second vs approximately 300 times/second for type
I myosin isoforms).[90-94] This allows for a short
cross-bridge cycle time and, therefore, the ability to
develop force rapidly. In contrast, type I fibres dis-
play comparatively low ATPase activity and Vmax

with long contraction times/twitch durations.[90-94]

For example, Vmax has been shown to vary from
approximately 0.8 fibre lengths/second in type I fi-
bres to approximately 3.5 fibre lengths/second and
5.6 fibre lengths/second in type IIa and IIx fibres,
respectively[86,95,96] (note these investigations used
sub-physiological temperatures and thus may not
reflect function in vivo[88]). When this literature in-
volving single fibre preparations is collated, a con-
tinuum of Vmax (relative to fibre length) and Pmax

(relative to CSA) for the fibre types is evident as
follows IIx> IIa> I. Furthermore, investigations of
bundles of fibres reported a greater a/Fmax ratio in
type II versus type I fibres, indicating a greater de-
gree of curvature of the force-velocity curve, and
thus lower power output, for type I fibres.[19,94]
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Therefore, the maximal power output of a muscle
is influenced by its fibre type composition. Mus-
cles with a high percentage of type II fibres dis-
play greater Pmax in comparison to muscles with a
high percentage of type I fibres.[8,12,97] However,
future research is required in order to determine
the magnitude of differences in Pmax as well as
Vmax between fibre types and subtypes at phy-
siological temperatures in intact fibres.

Cross-sectional comparisons have revealed that
elite strength-power athletes have predominately
type II fibres, whereas elite endurance athletes dis-
play a predominance of type I fibres.[98,99] While
approximately 45% of the variance in muscle fibre
type is believed to be associated with inherited
factors,[100] findings of fibre type transformations
from type I to II (and vice versa) after periods of
intense training[101-105] and detraining[106,107] in-
dicate plasticity in fibre type composition based on
environmental conditions.[100] However, transfor-
mations between type I and II fibres have been
debated throughout the literature and further re-
search is required to understand the precise con-
ditions under which they occur.[15] Additionally,
resistance training has been shown to elicit trans-
formations in myosin heavy chain gene expression
within type I and II fibres. Transformations in
type II subtypes have occurred following strength
training whereby type IIx isoforms are reduced at
the expense of an increase in the expression of type
IIa isoforms.[87,108-110] When a muscle is chroni-
cally stressed with high loading requirements, it is
theorized that the contractile protein properties
are shifted to a more economical cross-bridge cy-
cling system (i.e. increased oxidative capacity al-
lowing for sustained power output over a longer
period).[111,112] This shift in type II subtypes may
be detrimental to Pmax but is compensated for by
the preferential hypertrophy of type II fibres fol-
lowing strength training (discussed further in sec-
tion 2.2.1). Interestingly, a period of detraining
following strength training has been observed to
evoke an ‘overshoot’ in type IIx composition that
is markedly higher than values observed prior to
the strength training.[110] However, the influence
of ballistic power training on possible myosin
heavy chain isoform shifts is unclear, with con-
flicting reports of strong trends towards transfor-

mations from type IIx to IIa[86,113] and no such
changes following training.[114,115] Further re-
search is required to elucidate exactly how muscle
fibre subtypes respond to ballistic power training.
It is important to note that even if transformations
between muscle fibre types and/or subtypes did
occur, the contribution to improving maximal
muscular power would be relatively small com-
pared with alterations in other morphological
properties (i.e. CSA or architectural characteris-
tics).[15] Additionally, contractile properties can
also improve following training without apparent
changes in fibre type or subtype proportions. For
example, Malisoux and colleagues[86,116] reported
increases in Vmax of all fibre types following plyo-
metric training as well as improvements in several
functional performance measures despite an in-
crease in type IIa at the expense of IIx. Further
research is necessary to determine the degree of
training-induced adaptations in contractile prop-
erties evident across the fibre types and subtypes at
physiological temperatures.

2.2 Muscle Architecture

2.2.1 Cross-Sectional Area

The maximal force generated by a single
muscle fibre is directly proportional to its CSA,
irrespective of the fibre type.[1,18,117-119] Due to
the fact that power is heavily influenced by Fmax,
a muscle fibre with greater CSA can therefore
generate higher Pmax.

[16,86,87,120] A comparison of
single muscle fibres between sedentary men and
men involved with regular resistance training for
7.6 – 1.6 years highlights these findings.[120] The
resistance-trained men had significantly greater
CSA, Fmax and Pmax for type I and type II fibres
compared with the sedentary men. However, the
differences between the groups were no longer evi-
dent when Fmax was normalized to CSA and Pmax

was normalized to fibre volume (which accounts
for differences in both fibre CSA and length).[120]

Evidence from single fibre studies is supported by
research demonstrating that maximal voluntary
isometric force is proportional to whole-muscle
CSA.[121-123] For example, using CT scans to as-
sess muscle CSA, Maughan and associates[123]

reported significantly higher Fmax in muscles with
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greater CSA. The Fmax-to-CSA ratio was not sig-
nificantly different between experienced strength-
trained subjects and untrained controls, suggesting
that variation in CSA accounted for the majority
of the differences seen in Fmax.

[123] Strong re-
lationships have also been reported between knee
extension Fmax and quadriceps CSA in both men
(r = 0.71) and women (r = 0.76).[124,125] However,
it is important to note that not all of the variation
in whole-muscle Fmax can be explained solely by
variation in muscle CSA.[126] Factors such as
neural drive,[127-129] fibre-type composition,[130]

pennation angle[131] and the lever system through
which Fmax is measured[132] may also contribute.

In response to training, changes to Fmax of
single muscle fibres are proportional to changes
in fibre CSA.[96,120,133] Increases in fibre CSA
are brought about through increases in the size
and number of myofibrils within the muscle
fibre.[111,134,135] These hypertrophic adaptations
occur in both type I and IImuscle fibres in response
to heavy strength training but to a greater degree in
type II fibres.[109,136-141] Extensive research has
established that heavy strength training is a very
effective stimulus for eliciting a hypertrophic res-
ponse inmuscle.[87,109,112,124,129,131,142,143] Training-
induced increases in CSA or Fmax are typically ac-
companied by improvements in maximal muscular
power.[10,16,84,86,87] However, much of this research
involved relatively untrained subjects with low to
moderate strength levels, in which improvements
in muscular function are easily invoked. Increases
in CSA following heavy strength training of
stronger/more trained individuals are expected to
be lower and take longer.[128] Therefore, the poss-
ible influence of increased CSA onmuscular power
is theorized to diminish as the training age of
the athlete increases. Furthermore, the degree of
muscle hypertrophy is highly dependent on the
type of training and the specific programme vari-
ables (i.e. intensity, volume and frequency).[144]

The relatively lighter loads used during ballistic
power training are typically too small to elicit the
necessary mechanical stimulus required to initiate
a significant hypertrophic response.[144-150] How-
ever, observations of hypertrophic responses fol-
lowing plyometric training[86,151,152] indicate that
further research is necessary to determine the im-

portant variables in plyometric and/or ballistic
training that may elicit an increase in CSA (i.e.
significant eccentric component to plyometrics,
volume or time under tension, etc.). Consequently,
increases in maximal muscular power mediated
by improved CSA are achieved primarily through
heavy strength training and, typically, not (ormark-
edly less) in response to specific power training.

2.2.2 Fascicle Length

While sarcomere Vmax differs quite signif-
icantly between various fibre types, the Vmax of a
muscle fibre is proportional to its length (assum-
ing a constant level of activation).[16,18,118,153-155]

For example, if a sarcomere shortens at two fibre
lengths per second, a fibre containing ten sarco-
meres in series would have a greater Vmax than
a fibre containing five sarcomeres in series
(i.e. 20 vs 10 fibre lengths/second). Due to the fact
that power is heavily influenced by Vmax, a longer
muscle fibre can therefore generate higher
Pmax.

[16,18,118,153] Correlational studies have re-
ported significant relationships between fascicle
length of vastus lateralis and gastrocnemius la-
teralis and 100 m sprint time in both men and
women (r= -0.43 to -0.57).[156,157] Furthermore,
cross-sectional investigations have revealed the
fascicle lengths of the vastus lateralis, gastroc-
nemius medialis and gastrocnemius lateralis to
be significantly longer in sprinters compared with
long-distance runners and untrained controls.[158]

However, it is unclear if these observations are a
result of genetic predisposition or if fascicle
lengthening is an adaptation to the modalities
of training commonly used by sprinters (i.e.
high-intensity sprint training and high-intensity
strength/power training). Regardless of the origin
of this architectural difference, these data in-
dicate the importance of relatively longer fascicle
lengths to rapid force-generation and maximal
power production during dynamic movements.

The adaptive response of fibre length following
training is not well understood. Animal models
have been used to investigate fibre length change
following various training interventions but have
returned inconclusive results.[159-161] Fascicle
length in humans has been measured as an in-
dicator of fibre length but the current literature
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offers little additional insight into the influence of
training on fibre length. Training studies have
reported fascicle length to increase in response to
resistance training with heavy loads,[142,162-164] re-
sistance training with light loads,[165] as well as in
subjects who ceased strength training and per-
formed jump and sprint training.[142] In contrast,
an effective heavy strength training programme of
the elbow extensors had no effect on fascicle length
of the triceps brachii,[166] a finding supported by
similar studies involving the lower body muscu-
lature.[167,168] While some of these changes were
coupled with improvements in performance, it
is unknown exactly how the changes in fascicle
length affected muscle Vmax or Pmax. Further re-
search is required to elucidate the most effective
training stimulus for longitudinal growth ofmuscle
fibres. Furthermore, while the addition of sarco-
meres in series is theorized to occur through similar
pathways as the addition of sarcomeres in parallel,
factors determining which type of muscle growth
occurs are unknown (the interested reader should
refer to Blazevich and Sharp[169] for a more de-
tailed discussion).

2.2.3 Pennation Angle

The pennation angle of a muscle, defined as
the angle between the muscle’s fascicles and the
line of action,[155,170,171] has important physiolo-
gical effects on the force-velocity relationship and
thus Pmax. As pennation angle increases, more
sarcomeres can be arranged in parallel (i.e. more
contractile tissue can attach to a given area of an
aponeurosis or tendon) and the muscle can there-
fore produce more force.[154,172] Additionally, an
increased pennation angle allows for muscle fibres
to shorten less for a given tendon displacement due
to the rotation of pennate muscle fibres during
contraction.[173] This increases the likelihood that a
fibre with a greater pennation angle operates closer
to its optimum length and, based on the length-
tension relationship, is able to generate more
force.[173] These factors act to increase Fmax and,
therefore, pennation angle influences the maximal
power output generated by a muscle. However,
greater pennation angles are also associated with
slower contraction velocities and thus, increasing
a muscle’s pennation angle may negatively im-

pact Vmax.
[155] Despite this, the increase in Fmax is

theorized to have substantially greater impact on
maximal power than increases to Vmax brought
about through an increase in pennation angle.[16]

Pennation angle is commonly thought to in-
crease in response to heavy strength training
and decrease in response to sprint training. These
theories are based on observations of popula-
tion differences whereby bodybuilders displayed
greater pennation angles and CSA than untrain-
ed subjects,[174] and highly trained sprinters pos-
sessed smaller pennation angles than both lesser
trained sprinters[157] and untrained controls.[156]

Further support for possible adaptability of
pennation angle to heavy strength training stem-
med from the significant relationships between
muscle thickness (indicative of CSA) and penna-
tion angle in the triceps brachii (r = 0.81), vastus
laterals (r = 0.61) and gastrocnemius medialis
(r = 0.56) of over 700 people with various train-
ing backgrounds.[175] These observations were
corroborated by studies involving training inter-
ventions in which heavy strength training sig-
nificantly increased pennation angle,[131,166] while
sprint/jump training significantly decreased pen-
nation angle.[142] Increases in pennation angle fol-
lowing heavy strength training were accompanied
by increased CSA and Fmax

[131,166] resulting in en-
hanced Pmax.

[107,110] However, other longitudinal
studies have failed to establish pennation angle
changes in response to heavy strength training in
previously trained[176] and untrained[167,168] peo-
ple. While the effectiveness of the training pro-
tocols implemented and the reliability of the
techniques used may have prevented pennation
angle changes being discovered, these findings
highlight that the effects of heavy strength train-
ing on pennation angle are not clearly under-
stood. Furthermore, it is unknown if ballistic
power training and other training modalities elic-
it changes in pennation angle or if changes are
influenced by the training status of the subject.

2.3 Tendon Properties

As previously discussed in section 1.3.3, fas-
cicle behaviour is affected by interactions be-
tween the contractile and elastic elements of the
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MTU.[53-57] The intrinsic compliance of tendon
impacts these interactions (i.e. affects the amount
of fascicle displacement) and, because a muscle’s
ability to generate force is both velocity and
length dependent, the level of tendon compliance
can influence maximal muscular power. Few data
currently exist regarding the potential adapt-
ability of tendon compliance in response to ex-
ercise[177,178] and the cross-sectional data to date
have revealed mixed results.[179,180] Kubo and col-
leagues[179] reported a negative relationship be-
tween sprint performance and tendon compliance
(r= -0.757) indicating that greater compliance is
beneficial for sprint performance. In contrast,
Bojsen-Møller and associates[180] observed knee
extensor rate-of-force development (RFD) to re-
late positively to stiffness of the vastus lateralis
tendon-aponeurosis (r= 0.55), suggesting that less
compliance is associated with enhanced muscular
performance. Thus, further research is essential
in order to determine the specific influence of ten-
don compliance on maximal power production as
to whether this tendon property is amendable to
exercise.

3. Neural Factors

The ability to generate maximal power during a
movement is not only governed by the muscles
morphology, but also by the ability of the nervous
system to appropriately activate the muscles in-
volved. The nervous system controls the activation
of muscles primarily through changes in motor unit
recruitment, firing frequency and synchronization
as well as inter-muscular coordination.

3.1 Motor Unit Recruitment

The force produced by a muscle is related to
the number and type of motor units recruited.
Motor units are recruited in a systematic order
during graded, voluntary contractions of increas-
ing force according to the size principle.[181,182]

Relatively small a-motoneurons that innervate
type I fibres are initially activated at low force
levels while progressively larger a-motoneurons
that activate type IIa and IIx fibres are typically
activated after the slow-twitch motor units at

higher thresholds of force.[181-183] The size prin-
ciple is the general rule of recruitment not only
for slow, graded contractions but also for iso-
metric[184] and ballistic contractions.[185,186] How-
ever, compared with slow, graded contractions,
the threshold of motor unit recruitment is typi-
cally lower during ballistic movements due to the
rapid force escalation to high levels.[186,187] The
maximum force capabilities of a motor unit has
been estimated to vary by up to 50 times.[188]

Thus, the force capable of being generated during
a movement is affected by which motor units are
recruited. During contractions typically required
for maximal power production, recruitment of
high-threshold motor units is very beneficial to
force production as they innervate a relatively
large number of high RFD/force-producing
muscle fibres.[189] Therefore, the ability to rapidly
recruit high-threshold motor units influences
maximal muscular power.

There are three common theories of adapta-
tion in motor unit recruitment that may occur in
response to training. It is hypothesized that train-
ing may result in increased motor unit recruit-
ment, preferential recruitment of high-threshold
motor units and/or lowering of the thresholds of
motor unit recruitment.[128,190] All of these poss-
ible adaptations would act to increase agonist
activation resulting in increased tension develop-
ment by the muscle and consequently improved
power output.

Observations of increased electromyography
(EMG) amplitude following training suggests
that a possible adaptation associated with en-
hanced muscular power may be an increase in the
level of motor unit recruitment.[128] However,
current techniques are unable to definitively es-
tablish whether or not training elicits a true in-
crease in motor unit recruitment as this would
require the identification of previously unin-
volved motor units that are recruited after train-
ing. Methodologies have been implemented to
gain an indication of possible training-induced
changes to the level of motor unit activation
(which encompasses recruitment and firing fre-
quency). These techniques involve the comparison
of force produced during a maximal volun-
tary contraction (MVC) and either a maximal
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tetanic muscle stimulation, or a supra-maximal
stimulus applied to the nerve of a muscle engaged
in a MVC (i.e. interpolated twitch techni-
que).[73,191-195] In both of these cases, the stimulus
can cause a significant difference in force pro-
duction between the voluntary and stimulated
contractions if all motor units have not been re-
cruited voluntarily (or the firing frequency of the
recruited motor units is submaximal, as discussed
in section 3.2). Results from early investigations
indicated that despite considerable inter-subject
variability, full voluntary activation was possible
in a variety of muscles during single joint, iso-
metric contractions in untrained but well moti-
vated individuals.[73,128,191-194] Consequently, it
was difficult to attribute training-induced in-
creases in EMG to changes in the level of motor
unit recruitment. However, advancements in
techniques have allowed for more sensitive mea-
surements, which have revealed levels of volun-
tary activation to range from 85% to 95% of
maximum capacity in the quadriceps femoris and
95–100% in a range of other muscles.[195] Despite
these differences and the theory that untrained
individuals may not be able to consistently recruit
the highest threshold motor units, resistance
training studies involving healthy adults indicate
that maximal voluntary activation does not in-
crease following training.[196-203] It is important
to note, however, that these longitudinal studies
may have been impaired by use of less sensitive
techniques than what are now available, the use
of non-specific isometric tests to evaluate the ef-
fects of dynamic training, and the small window
for improvement in some of the muscles as-
sessed.[195] Furthermore, voluntary activation
during maximal dynamic contractions has been
shown to be 88–90%, significantly lower than
voluntary activation during maximal isometric
contraction (95.2%).[204] It may therefore be
possible that training results in improved volun-
tary activation during dynamic movements and
especially in more complex, multi-joint sport-
specific movements. If future research was to
demonstrate this, increased motor unit recruit-
ment (or firing frequency) may in fact contribute
to training-induced improvements in maximal
muscular power.

The preferential recruitment of high-threshold
motor units following training is a somewhat
common theory of neural adaptation.[2,205,206]

While few exceptions to the size principle exist, it
has been theorized that well trained athletes may
be able to activate high-threshold motor units in
place of low-threshold motor units during ballis-
tic movements in an attempt to enhance maximal
muscular power.[2,206] This theory stems from se-
lective recruitment of high-threshold motor units
observed during very rapid stereotypedmovements
in the cat[207] as well as during eccentric[208,209]

or electrically induced contractions[210,211] in hu-
mans. In one of the only studies to assess this
theory, van Cutsem and co-workers[187] observed
the orderly motor unit recruitment of the size
principle to be preserved during both slow ramp
and ballistic contractions following ballistic power
training. However, this same study observed that
motor units were recruited at lower thresholds
after training during ballistic contractions.[187] The
post-training recruitment thresholds underwent a
significant shift to lower percentages ofMVC than
those observed during ballistic contractions at
baseline and in comparison with a non-training
control group. The earlier activation was reported
to be likely to contribute to the observed signif-
icant increase in the speed of voluntary ballistic
contraction.[187] Therefore, increases in maximal
power output following training may be due in
some part to lower recruitment thresholds during
ballistic contractions. While preferential recruit-
ment of type II fibres remains a possibility, the
current evidence for it occurring in response to
exercise in humans is not convincing. It is impor-
tant to note that a motor unit is trained in direct
proportion to its recruitment,[111] so movements
that require the recruitment of high-threshold
units must be incorporated into the training pro-
gramme for changes in recruitment to have an
impact on performance.

3.2 Firing Frequency

The motor unit firing frequency represents the
rate of neural impulses transmitted from the
a-motoneuron to the muscle fibres. The firing fre-
quency of a motor unit can impact the ability of a
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muscle fibre to generate force in two ways. First,
increasing the firing frequency enhances the
magnitude of force generated during a contrac-
tion. It has been estimated that the force of con-
traction may increase by 300–1500% when the
firing frequency of a motor unit is increased from
its minimum to maximum rate.[188] Second, mo-
tor unit firing frequency impacts the RFD of
muscle contraction. During ballistic contractions
motor units have been reported to begin firing at
very high frequencies followed by a rapid de-
cline.[212] The high initial firing frequency, which
is believed to be associated with an increase in the
number of doublet discharges,[187,213] results in
increased RFD, even if only maintained for a
very short period of time.[214] Therefore, by in-
fluencing the force and RFD of muscle contrac-
tion, motor unit firing frequency plays a role in
the development of maximal muscular power.

Training-induced enhancement of maximum
motor unit firing frequency has been proposed as
a possible mechanism driving improvements in
neuromuscular performance.[215] A cross-sectional
examination reported that weightlifters displayed
greater maximum motor unit firing frequency
during a MVC of the quadriceps compared with
untrained controls,[216] thus indicating that train-
ing may increase the maximal firing frequency of
motor units. As discussed in section 3.1, most re-
sistance training studies involving healthy adults
indicate that voluntary activation (which gives
an indication of both motor unit recruitment
and firing frequency) does not increase follow-
ing training.[196-203] However, more recent re-
search involving intramuscular EMGhas reported
training-induced increases in motor unit firing
frequency during maximal contractions.[187,217,218]

These observations were made following strength
training during maximal isometric contractions of
the abductor digiti minimi[217] and vastus later-
alis[219] as well as during ballistic contractions
in the tibialis anterior following ballistic power
training.[187] In the two strength-training studies,
rapid and pronounced improvements occurred in
maximal firing frequency between subsequent
testing sessions prior to training, which mirrored
improvements in maximal force.[217,218] Maximal
firing frequency remained elevated following vas-

tus lateralis training[218] but returned to values si-
milar to those observed at baseline in the abductor
digiti minimi after training.[217] van Cutsem and
co-workers[187] observed an increase in maximal
motor unit firing frequency following 12 weeks of
ballistic power training as well as enhanced max-
imal force and RFD values. These results suggest
that increases in maximal motor unit firing fre-
quency may contribute to improved force and
power generation especially in the early phases of
training.

Perhaps a more important consideration for
improved athletic performance is the possible
training-induced adaptations to the pattern of
motor unit firing frequency and the subsequent
impact on RFD. Compared with long-distance
runners and untrained controls, Saplinskas et al.[220]

observed sprinters to have the highest motor unit
firing frequency during the onset of rapid isomet-
ric dorsiflexion. This observation was supported
by an intervention study that reported the peak
firing frequency at the onset of ballistic contrac-
tion to increase following ballistic training.[187]

Furthermore, these higher firing frequencies were
maintained for longer throughout the contraction
after training.[187] Additionally, the authors re-
ported a training-induced increase in the percen-
tage of doublet discharges (i.e. a motor unit firing
two consecutive discharges in a 5ms or less in-
terval) at the onset of a ballistic contraction that
were reported to contribute to increases in RFD
and time to peak force during ballistic contrac-
tions.[187] Therefore, ballistic power training may
prompt adaptations to the pattern of motor unit
firing frequency that contributes to enhanced
maximal power production.

3.3 Motor Unit Synchronization

Motor unit synchronization occurs when two
or more motor units are activated concurrently
more frequently than expected for independent
random processes.[221] Although it is yet to be
convincingly demonstrated, synchronization has
commonly been hypothesized to augment force
production and positively influence RFD.[127,222]

Furthermore, synchronization is theorized to be a
nervous system adaptation that assists with the
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coactivation of numerous different muscles in
order to enhance RFD.[223,224] The manner in
which synchronization may influence force or
RFD is not readily apparent. No difference in
force production has been observed between
asynchronous and synchronous motor unit acti-
vation at frequencies similar to those observed in
MVC and asynchronous discharges of action
potentials has been shown to result in greater
force production at submaximal firing fre-
quencies.[225,226] Furthermore, voluntary contrac-
tions have been shown to produce greater RFD
than evoked tetanic contractions in which all
motor units are stimulated to fire concurrently.[214]

However, synchronization may actually be one of
the strategies for inter-muscular coordination and
therefore could impact force and/or RFD during
complex, multi-joint movements as opposed to
isolated, single-joint movements where synchroni-
zation does not appear to have a significant impact.
It has been hypothesized that synchronization
between muscles may be a strategy to simplify
and coordinate the activity of muscles in control
of mechanically unstable joints (e.g. the medial
and lateral vasti muscles and the patellofemoral
joint),[224] which would allow for greater trans-
mission ofmuscular power in complexmovements.
Therefore, further investigation is required in order
to determine if motor unit synchronization con-
tributes to enhanced maximal power production
especially during complex multi-joint movements.

Observations from cross-sectional compar-
isons have led to the theory that motor unit syn-
chronization may improve as a result of training.
Using surface EMG, Milner-Brown et al.[221]

observed recreational weightlifters to display
greater motor unit synchronization in the hand
muscles than untrained subjects. This observation
was corroborated by Semmler and Nordstrom[227]

who, using techniques that measured motor unit
discharges directly, demonstrated motor unit
synchronization to be significantly greater in
strength-trained subjects than both musicians and
untrained subjects. In one of the only intervention
studies examining motor unit synchronization,
Milner-Brown et al.[221] reported a significant im-
provement in motor unit synchronization (mea-
sured by surface EMG) following 6 weeks ofMVC

training of the hand muscles. However, the va-
lidity of using surface EMG to assess motor unit
synchronization has been questioned.[228] There-
fore, further research is required to elucidate if
changes to motor unit synchronization occur in
response to training.

3.4 Inter-Muscular Coordination

Inter-muscular coordination describes the ap-
propriate activation (both magnitude and timing)
of agonist, synergist and antagonist muscles
during a movement. For highly effective and ef-
ficient movement, agonist activation needs to be
supplemented by increased synergist activity and
decreased co-contraction of the antagonists.[190]

The coordinated activation of these muscles is
required to generate the greatest possible force
in the direction of movement.[190] ‘Triple exten-
sion’ (i.e. extension of the hips, knees and plantar
flexion of the ankles) of the lower limbs typical of
jumping and sprinting involves quite complex
interaction of uni- and multi-articulate musculo-
tendinous units performing various actions. It is
only with precise timing and level of activation
and relaxation of the agonists, synergists and
antagonists that power flow through the kinetic
chain will be optimized, impulse on the ground
maximized and, thus, performance in terms of
takeoff velocity maximized. Therefore, the ability
to generate maximal power output during ath-
letic movements is considerably influenced by
inter-muscular coordination.

3.4.1 Activation of Synergists

Synergists play a role in maximal power pro-
duction and it is possible that improved activation
and/or coordination of synergist muscles could
contribute to enhanced performance. While there
is much evidence of task-specific synergist co-
ordination, little information is available mon-
itoring possible changes to synergist activity
brought about by training. While untrained peo-
ple have been shown to activate agonists quite
effectively,[191-193] it is theorized that enhanced
activation and/or coordination of synergist mus-
cles may contribute to performance improve-
ments following training and are associated with
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the superior performance of trained individuals.[229]

Furthermore, adaptations in synergist muscles may
help explain the increases in force production ob-
served independent of increased neural activation
of the agonists, especially during the early phases of
training. Additional research is required to clarify
the nature of adaptations in synergists and the re-
lative contribution to enhancing performance.

3.4.2 Co-Activation of Antagonists

The magnitude of antagonist co-activation is
dependent on various factors including the type of
contraction,[230] load, velocity and precision[231] of
the movement as well as its range of motion.[232]

Antagonist co-activation is counterproductive to
movements in which maximal force must be gen-
erated due to the fact that the co-activation would
produce torque about the joint acting in the op-
posite direction of the desired movement.[233-235]

There is also evidence that co-activation may im-
pair the full activation of agonist muscles through
reciprocal inhibition.[236] However, antagonist co-
activation is beneficial in coordinating movements
and maintaining joint stability during actions,
especially those ballistic in nature. Despite these
advantages, excessive antagonist co-activation
may negatively influence the ability to perform
movements with maximal power.

It is hypothesized that training-induced im-
provements in performance are influenced to some
degree by a decrease in antagonist co-activation.
Comparisons of individuals with different training
backgrounds have rendered inconclusive results
and intervention studies have reported conflict-
ing evidence of adaptations to antagonist co-
activation. Hence, the possible training-induced
adaptations in antagonist co-activation and sub-
sequent impact on performance, remains unclear.
Antagonist co-activation has been reported to be
prominent during ballistic movements[237] and,
therefore, the potential to reduce co-activation in
such movements following training is relatively
greater. Furthermore, the level of antagonist co-
activation may be much greater during dynamic,
multi-joint movements than during the single-joint,
isometric movements commonly researched. Al-
though these areas have not yet been investigated,
it is theorized that a reduction in antagonist co-

activation during such complex movements would
contribute to improvements in maximal power
following training.[143]

4. Muscle Environment

Acute changes in the muscle environment (i.e.
alterations resulting from fatigue, changes in
hormone milieu and muscle temperature) impact
muscular performance and therefore the ability
to generate maximal power. During fatigue, nu-
merous muscle properties are altered including
ionic changes on the action potential, extra-
cellular and intracellular ions as well as intra-
cellular metabolites (the interested reader should
refer to recent comprehensive reviews of this
topic[238,239]). Each of these alterations negatively
affects maximal muscular power through im-
pairing the force generation and/or the velocity of
shortening during contractions.[238,239] Further-
more, recent evidence suggests that the combi-
nation of factors co-existing during fatigue in vivo
result in even greater impairment than what has
been observed for fatigue factors individually.[240]

While the influence of endocrine factors on adap-
tational mechanisms in muscle and the resulting
enhancement in muscular function have been well
reviewed,[241,242] acute hormonal changes may
potentially impact the ability to generate maximal
muscular power immediately. Recent evidence
indicating that treating bundle fibres with physio-
logical concentrations of dihydrotestosterone in-
creases specific force and phosphorylation of
myosin light chains of type II fibres, suggests that
changes in androgenic hormone concentrations in
the blood may acutely impact maximal muscular
power.[243] Additionally, alterations in muscle
temperature also influence maximal power pro-
duction as it has been shown that Pmax, Vmax, Fmax

as well as RFD decrease with a decrease in muscle
temperature[244-246] (for extensive reviews of this
topic please refer to[247-249]).

5. Conclusion

Maximal muscular power is influenced by a
wide variety of neuromuscular factors including
muscle fibre composition, cross-sectional area,
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fascicle length, pennation angle and tendon com-
pliance as well as motor unit recruitment, firing
frequency, synchronization and inter-muscular
coordination. Maximal power is also affected by
the type of muscle action involved and, in parti-
cular, the time available to develop force, storage
and utilization of elastic energy, interactions of
contractile and elastic elements, potentiation of
contractile and elastic filaments as well as stretch
reflexes. Furthermore, acute changes in the mus-
cle environment (i.e. alterations resulting from
fatigue, changes in hormone milieu and muscle
temperature) impact the ability to generate max-
imal power. Development of effective training
programmes that enhance maximal muscle power
must involve consideration of these factors and the
manner in which they respond to training.
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145. Häkkinen K, Komi PV, Alen M. Effect of explosive type
strength training on isometric force- and relaxation-time,
electromyographic and muscle fibre characteristics of
leg extensor muscles. Acta Physiol Scand 1985; 125 (4):
587-600
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